首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   817篇
  免费   109篇
  国内免费   3篇
  2021年   24篇
  2020年   10篇
  2019年   14篇
  2018年   10篇
  2017年   10篇
  2016年   16篇
  2015年   19篇
  2014年   34篇
  2013年   41篇
  2012年   65篇
  2011年   58篇
  2010年   37篇
  2009年   29篇
  2008年   40篇
  2007年   43篇
  2006年   32篇
  2005年   39篇
  2004年   46篇
  2003年   31篇
  2002年   38篇
  2001年   17篇
  2000年   18篇
  1999年   26篇
  1998年   15篇
  1997年   10篇
  1996年   12篇
  1995年   13篇
  1994年   9篇
  1993年   11篇
  1992年   12篇
  1991年   18篇
  1990年   13篇
  1989年   10篇
  1988年   14篇
  1987年   9篇
  1986年   9篇
  1985年   8篇
  1984年   11篇
  1983年   8篇
  1982年   9篇
  1981年   4篇
  1980年   2篇
  1979年   5篇
  1978年   5篇
  1977年   7篇
  1976年   2篇
  1975年   2篇
  1973年   3篇
  1951年   1篇
  1944年   1篇
排序方式: 共有929条查询结果,搜索用时 328 毫秒
41.
When organisms perform a single task, selection leads to phenotypes that maximize performance at that task. When organisms need to perform multiple tasks, a trade‐off arises because no phenotype can optimize all tasks. Recent work addressed this question, and assumed that the performance at each task decays with distance in trait space from the best phenotype at that task. Under this assumption, the best‐fitness solutions (termed the Pareto front) lie on simple low‐dimensional shapes in trait space: line segments, triangles and other polygons. The vertices of these polygons are specialists at a single task. Here, we generalize this finding, by considering performance functions of general form, not necessarily functions that decay monotonically with distance from their peak. We find that, except for performance functions with highly eccentric contours, simple shapes in phenotype space are still found, but with mildly curving edges instead of straight ones. In a wide range of systems, complex data on multiple quantitative traits, which might be expected to fill a high‐dimensional phenotype space, is predicted instead to collapse onto low‐dimensional shapes; phenotypes near the vertices of these shapes are predicted to be specialists, and can thus suggest which tasks may be at play.  相似文献   
42.
43.
Recurrent connections play an important role in cortical function, yet their exact contribution to the network computation remains unknown. The principles guiding the long-term evolution of these connections are poorly understood as well. Therefore, gaining insight into their computational role and into the mechanism shaping their pattern would be of great importance. To that end, we studied the learning dynamics and emergent recurrent connectivity in a sensory network model based on a first-principle information theoretic approach. As a test case, we applied this framework to a model of a hypercolumn in the visual cortex and found that the evolved connections between orientation columns have a "Mexican hat" profile, consistent with empirical data and previous modeling work. Furthermore, we found that optimal information representation is achieved when the network operates near a critical point in its dynamics. Neuronal networks working near such a phase transition are most sensitive to their inputs and are thus optimal in terms of information representation. Nevertheless, a mild change in the pattern of interactions may cause such networks to undergo a transition into a different regime of behavior in which the network activity is dominated by its internal recurrent dynamics and does not reflect the objective input. We discuss several mechanisms by which the pattern of interactions can be driven into this supercritical regime and relate them to various neurological and neuropsychiatric phenomena.  相似文献   
44.
Synaesthesia is an unusual perceptual experience in which an inducer stimulus triggers a percept in a different domain in addition to its own. To explore the conditions under which synaesthesia evolves, we studied a neuronal network model that represents two recurrently connected neural systems. The interactions in the network evolve according to learning rules that optimize sensory sensitivity. We demonstrate several scenarios, such as sensory deprivation or heightened plasticity, under which synaesthesia can evolve even though the inputs to the two systems are statistically independent and the initial cross-talk interactions are zero. Sensory deprivation is the known causal mechanism for acquired synaesthesia and increased plasticity is implicated in developmental synaesthesia. The model unifies different causes of synaesthesia within a single theoretical framework and repositions synaesthesia not as some quirk of aberrant connectivity, but rather as a functional brain state that can emerge as a consequence of optimising sensory information processing.  相似文献   
45.
46.
An ion exchange high performance liquid chromatography method was developed for determining creatinine levels in both mouse and rat serum samples. Separation of creatinine from other serum components was achieved in 10 min using a 100 x 4.1-mm, 10 microm strong cation exchange column following acetonitrile precipitation of serum proteins. Incorporation of a guard cartridge placed in-line prior to the analytical column was employed to prevent interference from compounds used in renal disease animal trials. Creatinine levels in normal and diseased animals were accurately determined in the 0.01-10 mg/dL range, and average recovery of the method was approximately 85% for both mouse and rat serum. Addition of 0.5-1.0% acetic acid to the acetonitrile used for protein precipitation significantly improved creatinine recovery to above 97% in mouse serum. The method was used for routine preclinical diagnosis of rat and mouse model renal function, and for the evaluation of renal disease treatment efficacy.  相似文献   
47.
The genus Pinus has wide geographical range and includes species that are the most economically valued among forest trees worldwide. Pine needle length varies greatly among species, but the effects of needle length on anatomy, function, and coordination and trade‐offs among traits are poorly understood. We examined variation in leaf morphological, anatomical, mechanical, chemical, and physiological characteristics among five southern pine species: Pinus echinata, Pinus elliottii, Pinus palustris, Pinus taeda, and Pinus virginiana. We found that increasing needle length contributed to a trade‐off between the relative fractions of support versus photosynthetic tissue (mesophyll) across species. From the shortest (7 cm) to the longest (36 cm) needles, mechanical tissue fraction increased by 50%, whereas needle dry density decreased by 21%, revealing multiple adjustments to a greater need for mechanical support in longer needles. We also found a fourfold increase in leaf hydraulic conductance over the range of needle length across species, associated with weaker upward trends in stomatal conductance and photosynthetic capacity. Our results suggest that the leaf size strongly influences their anatomical traits, which, in turn, are reflected in leaf mechanical support and physiological capacity.  相似文献   
48.
49.
Regulation of the p53 tumor suppressor protein   总被引:35,自引:0,他引:35  
  相似文献   
50.
Scorpion neurotoxins of the excitatory group show total specificity for insects and serve as invaluable probes for insect sodium channels. However, despite their significance and potential for application in insect-pest control, the structural basis for their bioactivity is still unknown. We isolated, characterized, and expressed an atypically long excitatory toxin, Bj-xtrIT, whose bioactive features resembled those of classical excitatory toxins, despite only 49% sequence identity. With the objective of clarifying the toxic site of this unique pharmacological group, Bj-xtrIT was employed in a genetic approach using point mutagenesis and biological and structural assays of the mutant products. A primary target for modification was the structurally unique C-terminal region. Sequential deletions of C-terminal residues suggested an inevitable significance of Ile73 and Ile74 for toxicity. Based on the bioactive role of the C-terminal region and a comparison of Bj-xtrIT with a Bj-xtrIT-based model of a classical excitatory toxin, AaHIT, a conserved surface comprising the C terminus is suggested to form the site of recognition with the sodium channel receptor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号